Skip to content

Building a Home Supercomputer for LLaMA 3.1: Because Who Needs a House Anyway?

Building a Home Supercomputer for LLaMA 3.1: Because Who Needs a House Anyway?

Mark Zuckerberg, is gracing the podcast circuit to extol the virtues of open-source LLMs and Facebook's noble quest to democratize AI. Color me impressed – they've actually released this highly valuable intellectual property into the wild. My initial reaction? A rush of excitement, a mad dash to spin up a machine and explore this cutting-edge model firsthand.

Reality, of course, soon set in. The hardware and infrastructure costs are significant. Undeterred, I pondered the possibility of capitalising on this AI goldmine as a new business venture. However, the path to monetisation is complex, and the potential rewards are uncertain. It would require someone with a high risk tolerance to leap into this level of the AI space – essentially total reliance on a third-party system that will be outdated quickly.

Let's talk numbers, shall we? To deploy your very own private instance of Llama 3.1:405B, you're looking at a cool $100K in hardware alone. Yes, the next model iteration will likely arrive sooner than later, but this rapid pace of innovation also presents opportunities for early adopters to stay ahead of the curve. It's enough to make one's head spin with possibilities.

So, the question remains: is this open-source AI model truly democratising access? The answer is nuanced. While it may not be immediately accessible to everyone, it lowers the barrier to entry for businesses and individuals with the resources to explore and innovate. The democratisation of AI is a journey, not a destination, and open-source models like this are an expensive step in the right direction.

Here is a back of the napkin breakdown of what the costs would look like (all costs are estimates from a quick google search):

Specifications

Component Details
GPUs Type: NVIDIA A100 or equivalent
Number: At least 8 GPUs
VRAM: 80 GB per GPU
CPU Type: AMD EPYC or Intel Xeon
Cores: 64+ cores
Clock Speed: 2.5 GHz or higher
Memory (RAM) Size: 1 TB or more
Storage Type: NVMe SSDs
Capacity: 10 TB or more
Networking Type: High-speed interconnect (InfiniBand)
Speed: 100 Gbps or higher
Power Supply Wattage: At least 5000W, preferably with redundant power supplies
Cooling Type: Advanced liquid cooling or equivalent
Capacity: Sufficient for high thermal output

Cost Estimates

Hardware Costs

Component Cost Details Total Cost
GPUs Cost per GPU: $10,000 (NVIDIA A100) $80,000 (8 GPUs)
CPU Cost per CPU: $6,000 (AMD EPYC 7763) $12,000 (2 CPUs)
Memory (RAM) Cost per TB: $5,000 $5,000 (1 TB)
Storage Cost per TB: $300 $3,000 (10 TB)
Networking Cost: $10,000 $10,000
Power Supply Cost: $2,000 $2,000
Cooling Cost: $5,000 $5,000



Additional Costs

Component Cost
Chassis/Case $3,000
Motherboard and Components $5,000
Cabling and Miscellaneous $2,000



Total Estimated Cost

Category Estimated Cost
Hardware $127,000



Running Costs

Component Cost Details Monthly Cost Annual Cost
Electricity Power Consumption: 5000W
Cost per kWh: $0.10
~$360 (24/7) -
Maintenance - - $10,000
Software Licenses Cost: Variable - -




Summary

Category Cost
Initial Setup Cost Approximately $127,000
Monthly Running Cost ~$360 (electricity only)
Annual Maintenance Cost $10,000